Development of a fusion adaptive algorithm for marine debris detection within the post-Sandy restoration framework
نویسندگان
چکیده
Recognition of marine debris represents a difficult task due to the extreme variability of the marine environment, the possible targets, and the variable skill levels of human operators. The range of potential targets is much wider than similar fields of research such as mine hunting, localization of unexploded ordnance or pipeline detection. In order to address this additional complexity, an adaptive algorithm is being developing that appropriately responds to changes in the environment, and context. The preliminary step is to properly geometrically and radiometrically correct the collected data. Then, the core engine manages the fusion of a set of statisticallyand physically-based algorithms, working at different levels (swath, beam, snippet, and pixel) and using both predictive modeling (that is, a high-frequency acoustic backscatter model) and phenomenological (e.g., digital image processing techniques) approaches. The expected outcome is the reduction of inter-algorithmic cross-correlation and, thus, the probability of false alarm. At this early stage, we provide a proof of concept showing outcomes from algorithms that dynamically adapt themselves to the depth and average backscatter level met in the surveyed environment, targeting marine debris (modeled as objects of about 1-m size). The project is embodied in a modular software library, called MATADOR (Marine Target Detection and Object Recognition).
منابع مشابه
Adaptive Decision Fusion in Detection Networks
In a detection network, the final decision is made by fusing the decisions from local detectors. The objective of that decision is to minimize the final error probability. To implement and optimal fusion rule, the performance of each detector, i.e. its probability of false alarm and its probability of missed detection as well as the a priori probabilities of the hypotheses, must be known. How...
متن کاملAdaptive Decision Fusion in Detection Networks
In a detection
 network, the final decision is made by fusing the decisions from local detectors. The objective of that decision is to minimize the final error probability. To implement and optimal fusion rule, the performance of each detector, i.e. its probability of false alarm and its probability of missed detection as well as the a priori probabilities of the hypotheses, must be known. H...
متن کاملAdaptive Thresholding in Marine RADARs
In order to detect targets upon sea surface or near it, marine radars should be capable of distinguishing signals of target reflections from the sea clutter. Our proposed method in this paper relates to detection of dissimilar marine targets in an inhomogeneous environment with clutter and non-stationary noises, and is based on adaptive thresholding determination methods. The variance and t...
متن کاملUtilizing Kernel Adaptive Filters for Speech Enhancement within the ALE Framework
Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions t...
متن کاملENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کامل